Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Mol Ther Oncol ; 32(1): 200760, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38596303

RESUMO

Neoantigen (neoAg)-based cancer vaccines expand preexisting antitumor immunity and elicit novel cancer-specific T cells. However, at odds with prophylactic vaccines, therapeutic antitumor immunity must be induced when the tumor is present and has already established an immunosuppressive environment capable of rapidly impairing the function of anticancer neoAg T cells, thereby leading to lack of efficacy. To overcome tumor-induced immunosuppression, we first vaccinated mice bearing immune checkpoint inhibitor (CPI)-resistant tumors with an adenovirus vector encoding a set of potent cancer-exogenous CD8 and CD4 T cell epitopes (Ad-CAP1), and then "taught" cancer cells to express the same epitopes by using a tumor-retargeted herpesvirus vector (THV-CAP1). Potent CD8 effector T lymphocytes were elicited by Ad-CAP1, and subsequent THV-CAP1 delivery led to a significant delay in tumor growth and even cure.

2.
Int J Biol Macromol ; 262(Pt 1): 129926, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38331062

RESUMO

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) posed a threat to public health and the global economy, necessitating the development of various vaccination strategies. Mutations in the SPIKE protein gene, a crucial component of mRNA and adenovirus-based vaccines, raised concerns about vaccine efficacy, prompting the need for rapid vaccine updates. To address this, we leveraged PeptiCRAd, an oncolytic vaccine based on tumor antigen decorated oncolytic adenoviruses, creating a vaccine platform called PeptiVAX. First, we identified multiple CD8 T-cell epitopes from highly conserved regions across coronaviruses, expanding the range of T-cell responses to non-SPIKE proteins. We designed short segments containing the predicted epitopes presented by common HLA-Is in the global population. Testing the immunogenicity, we characterized T-cell responses to candidate peptides in peripheral blood mononuclear cells (PBMCs) from pre-pandemic healthy donors and ICU patients. As a proof of concept in mice, we selected a peptide with epitopes predicted to bind to murine MHC-I haplotypes. Our technology successfully elicited peptide-specific T-cell responses, unaffected by the use of unarmed adenoviral vectors or adeno-based vaccines encoding SPIKE. In conclusion, PeptiVAX represents a fast and adaptable SARS-CoV-2 vaccine delivery system that broadens T-cell responses beyond the SPIKE protein, offering potential benefits for vaccine effectiveness.


Assuntos
COVID-19 , Vacinas Virais , Humanos , Camundongos , Animais , Vacinas contra COVID-19 , COVID-19/prevenção & controle , Glicoproteína da Espícula de Coronavírus/genética , Leucócitos Mononucleares , SARS-CoV-2 , Peptídeos/química , Epitopos de Linfócito T
3.
bioRxiv ; 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38076895

RESUMO

SARS-CoV-2 continues to pose a global threat, and current vaccines, while effective against severe illness, fall short in preventing transmission. To address this challenge, there's a need for vaccines that induce mucosal immunity and can rapidly control the virus. In this study, we demonstrate that a single immunization with a novel gorilla adenovirus-based vaccine (GRAd) carrying the pre-fusion stabilized Spike protein (S-2P) in non-human primates provided protective immunity for over one year against the BA.5 variant of SARS-CoV-2. A prime-boost regimen using GRAd followed by adjuvanted S-2P (GRAd+S-2P) accelerated viral clearance in both the lower and upper airways. GRAd delivered via aerosol (GRAd(AE)+S-2P) modestly improved protection compared to its matched intramuscular regimen, but showed dramatically superior boosting by mRNA and, importantly, total virus clearance in the upper airway by day 4 post infection. GrAd vaccination regimens elicited robust and durable systemic and mucosal antibody responses to multiple SARS-CoV-2 variants, but only GRAd(AE)+S-2P generated long-lasting T cell responses in the lung. This research underscores the flexibility of the GRAd vaccine platform to provide durable immunity against SARS-CoV-2 in both the lower and upper airways.

4.
Cell Rep Med ; 4(6): 101084, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37315558

RESUMO

The ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic and heterologous immunization approaches implemented worldwide for booster doses call for diversified vaccine portfolios. GRAd-COV2 is a gorilla adenovirus-based COVID-19 vaccine candidate encoding prefusion-stabilized spike. The safety and immunogenicity of GRAd-COV2 is evaluated in a dose- and regimen-finding phase 2 trial (COVITAR study, ClinicalTrials.gov: NCT04791423) whereby 917 eligible participants are randomized to receive a single intramuscular GRAd-COV2 administration followed by placebo, or two vaccine injections, or two doses of placebo, spaced over 3 weeks. Here, we report that GRAd-COV2 is well tolerated and induces robust immune responses after a single immunization; a second administration increases binding and neutralizing antibody titers. Potent, variant of concern (VOC) cross-reactive spike-specific T cell response peaks after the first dose and is characterized by high frequencies of CD8s. T cells maintain immediate effector functions and high proliferative potential over time. Thus, GRAd vector is a valuable platform for genetic vaccine development, especially when robust CD8 response is needed.


Assuntos
COVID-19 , Vacinas , Humanos , SARS-CoV-2 , Vacinas contra COVID-19 , COVID-19/prevenção & controle , Imunidade Celular
6.
Front Immunol ; 14: 1043631, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36865556

RESUMO

Effective secondary response to antigen is a hallmark of immunological memory. However, the extent of memory CD8 T cell response to secondary boost varies at different times after a primary response. Considering the central role of memory CD8 T cells in long-lived protection against viral infections and tumors, a better understanding of the molecular mechanisms underlying the changing responsiveness of these cells to antigenic challenge would be beneficial. We examined here primed CD8 T cell response to boost in a BALB/c mouse model of intramuscular vaccination by priming with HIV-1 gag-encoding Chimpanzee adenovector, and boosting with HIV-1 gag-encoding Modified Vaccinia virus Ankara. We found that boost was more effective at day(d)100 than at d30 post-prime, as evaluated at d45 post-boost by multi-lymphoid organ assessment of gag-specific CD8 T cell frequency, CD62L-expression (as a guide to memory status) and in vivo killing. RNA-sequencing of splenic gag-primed CD8 T cells at d100 revealed a quiescent, but highly responsive signature, that trended toward a central memory (CD62L+) phenotype. Interestingly, gag-specific CD8 T cell frequency selectively diminished in the blood at d100, relative to the spleen, lymph nodes and bone marrow. These results open the possibility to modify prime/boost intervals to achieve an improved memory CD8 T cell secondary response.


Assuntos
Linfócitos T CD8-Positivos , Imunização Secundária , Células de Memória Imunológica , Vacinas , Animais , Camundongos , Linfócitos T CD8-Positivos/imunologia , Divisão Celular , Camundongos Endogâmicos BALB C , Vacinação , Células de Memória Imunológica/imunologia
7.
NPJ Vaccines ; 7(1): 111, 2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36153335

RESUMO

Despite the successful deployment of efficacious vaccines and therapeutics, the development of novel vaccines for SARS-CoV-2 remains a major goal to increase vaccine doses availability and accessibility for lower income setting. We report here on the kinetics of Spike-specific humoral and T-cell response in young and old volunteers over 6 months follow-up after a single intramuscular administration of GRAd-COV2, a gorilla adenoviral vector-based vaccine candidate currently in phase-2 of clinical development. At all three tested vaccine dosages, Spike binding and neutralizing antibodies were induced and substantially maintained up to 3 months, to then contract at 6 months. Potent T-cell responses were readily induced and sustained throughout the study period, with only minor decline. No major differences in immune response to GRAd-COV2 vaccination were observed in the two age cohorts. In light of its favorable safety and immunogenicity, GRAd-COV2 is a valuable candidate for further clinical development and potential addition to the COVID-19 vaccine toolbox to help fighting SARS-CoV-2 pandemic.

8.
Eur J Immunol ; 52(5): 835-837, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34958459

RESUMO

Vδ2+ γδT cells are unconventional T cells that can be activated by cytokines without TCR signaling. Adenovirus vaccine vectors activated Vδ2+ γδT cells in an interleukin 18-, TNF-, and type I interferon-dependent manner. This stimulatory capacity was associated with adenovirus vectors of non-species C origin, including the ChAdOx1 vaccine platform.


Assuntos
Interferon Tipo I , Subpopulações de Linfócitos T , Adenoviridae/genética , Citocinas , Interleucina-18 , Receptores de Antígenos de Linfócitos T gama-delta/genética
9.
Sci Transl Med ; 14(627): eabj1996, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34698501

RESUMO

Safe and effective vaccines against coronavirus disease 2019 (COVID-19) are essential for ending the ongoing pandemic. Although impressive progress has been made with several COVID-19 vaccines already approved, it is clear that those developed so far cannot meet the global vaccine demand alone. We describe a COVID-19 vaccine based on a replication-defective gorilla adenovirus expressing the stabilized prefusion severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein named GRAd-COV2. We assessed the safety and immunogenicity of a single-dose regimen of this vaccine in healthy younger and older adults to select the appropriate dose for each age group. For this purpose, a phase 1, dose-escalation, open-labeled trial was conducted including 90 healthy participants (45 aged 18 to 55 years old and 45 aged 65 to 85 years old) who received a single intramuscular administration of GRAd-COV2 at three escalating doses. Local and systemic adverse reactions were mostly mild or moderate and of short duration, and no serious adverse events were reported. Four weeks after vaccination, seroconversion to spike protein and receptor binding domain was achieved in 43 of 44 young volunteers and in 45 of 45 older participants. Consistently, neutralizing antibodies were detected in 42 of 44 younger-age and 45 of 45 older-age volunteers. In addition, GRAd-COV2 induced a robust and T helper 1 cell (TH1)­skewed T cell response against the spike protein in 89 of 90 participants from both age groups. Overall, the safety and immunogenicity data from the phase 1 trial support the further development of this vaccine.


Assuntos
Vacinas contra Adenovirus , COVID-19 , Adenoviridae , Idoso , Animais , Vacinas contra COVID-19 , Gorilla gorilla , Humanos , SARS-CoV-2
10.
NPJ Vaccines ; 6(1): 131, 2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34737309

RESUMO

Here we report on the humoral and cellular immune response in eight volunteers who autonomously chose to adhere to the Italian national COVID-19 vaccination campaign more than 3 months after receiving a single-administration GRAd-COV2 vaccine candidate in the context of the phase-1 clinical trial. We observed a clear boost of both binding/neutralizing antibodies as well as T-cell responses upon receipt of the heterologous BNT162b2 or ChAdOx1-nCOV19 vaccines. These results, despite the limitation of the small sample size, support the concept that a single dose of an adenoviral vaccine may represent an ideal tool to effectively prime a balanced immune response, which can be boosted to high levels by a single dose of a different vaccine platform.

11.
NPJ Vaccines ; 6(1): 117, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34584101

RESUMO

Effective vaccines for human immunodeficiency virus-1 (HIV-1) and hepatitis C virus (HCV) remain a significant challenge for these infectious diseases. Given that the innate immune response is key to controlling the scale and nature of developing adaptive immune responses, targeting natural killer (NK) cells that can promote a T-helper type 1 (Th1)-type immune response through the production of interferon-γ (IFNγ) remains an untapped strategic target for improved vaccination approaches. Here, we investigate metabolic and functional responses of NK cells to simian adenovirus prime and MVA boost vaccination in a cohort of healthy volunteers receiving a dual HCV-HIV-1 vaccine. Early and late timepoints demonstrated metabolic changes that contributed to the sustained proliferation of all NK cells. However, a strong impact of human cytomegalovirus (HCMV) on some metabolic and functional responses in NK cells was observed in HCMV seropositive participants. These changes were not restricted to molecularly defined adaptive NK cells; indeed, canonical NK cells that produced most IFNγ in response to vaccination were equally impacted in individuals with latent HCMV. In summary, NK cells undergo metabolic changes in response to vaccination, and understanding these in the context of HCMV is an important step towards rational vaccine design against a range of human viral pathogens.

12.
Mol Ther ; 29(8): 2412-2423, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-33895322

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic caused by the emergent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) threatens global public health, and there is an urgent need to develop safe and effective vaccines. Here, we report the generation and the preclinical evaluation of a novel replication-defective gorilla adenovirus-vectored vaccine encoding the pre-fusion stabilized Spike (S) protein of SARS-CoV-2. We show that our vaccine candidate, GRAd-COV2, is highly immunogenic both in mice and macaques, eliciting both functional antibodies that neutralize SARS-CoV-2 infection and block Spike protein binding to the ACE2 receptor, and a robust, T helper (Th)1-dominated cellular response. We show here that the pre-fusion stabilized Spike antigen is superior to the wild type in inducing ACE2-interfering, SARS-CoV-2-neutralizing antibodies. To face the unprecedented need for vaccine manufacturing at a massive scale, different GRAd genome deletions were compared to select the vector backbone showing the highest productivity in stirred tank bioreactors. This preliminary dataset identified GRAd-COV2 as a potential COVID-19 vaccine candidate, supporting the translation of the GRAd-COV2 vaccine in a currently ongoing phase I clinical trial (ClinicalTrials.gov: NCT04528641).


Assuntos
Adenoviridae/imunologia , Vacinas contra Adenovirus/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , Gorilla gorilla/imunologia , Imunogenicidade da Vacina/imunologia , SARS-CoV-2/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Vetores Genéticos/imunologia , Gorilla gorilla/virologia , Células HEK293 , Células HeLa , Humanos , Macaca , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Pandemias/prevenção & controle , Adulto Jovem
14.
N Engl J Med ; 384(6): 541-549, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33567193

RESUMO

BACKGROUND: A safe and effective vaccine to prevent chronic hepatitis C virus (HCV) infection is a critical component of efforts to eliminate the disease. METHODS: In this phase 1-2 randomized, double-blind, placebo-controlled trial, we evaluated a recombinant chimpanzee adenovirus 3 vector priming vaccination followed by a recombinant modified vaccinia Ankara boost; both vaccines encode HCV nonstructural proteins. Adults who were considered to be at risk for HCV infection on the basis of a history of recent injection drug use were randomly assigned (in a 1:1 ratio) to receive vaccine or placebo on days 0 and 56. Vaccine-related serious adverse events, severe local or systemic adverse events, and laboratory adverse events were the primary safety end points. The primary efficacy end point was chronic HCV infection, defined as persistent viremia for 6 months. RESULTS: A total of 548 participants underwent randomization, with 274 assigned to each group. There was no significant difference in the incidence of chronic HCV infection between the groups. In the per-protocol population, chronic HCV infection developed in 14 participants in each group (hazard ratio [vaccine vs. placebo], 1.53; 95% confidence interval [CI], 0.66 to 3.55; vaccine efficacy, -53%; 95% CI, -255 to 34). In the modified intention-to-treat population, chronic HCV infection developed in 19 participants in the vaccine group and 17 in placebo group (hazard ratio, 1.66; 95% CI, 0.79 to 3.50; vaccine efficacy, -66%; 95% CI, -250 to 21). The geometric mean peak HCV RNA level after infection differed between the vaccine group and the placebo group (152.51×103 IU per milliliter and 1804.93×103 IU per milliliter, respectively). T-cell responses to HCV were detected in 78% of the participants in the vaccine group. The percentages of participants with serious adverse events were similar in the two groups. CONCLUSIONS: In this trial, the HCV vaccine regimen did not cause serious adverse events, produced HCV-specific T-cell responses, and lowered the peak HCV RNA level, but it did not prevent chronic HCV infection. (Funded by the National Institute of Allergy and Infectious Diseases; ClinicalTrials.gov number, NCT01436357.).


Assuntos
Anticorpos Anti-Hepatite C/sangue , Hepatite C Crônica/prevenção & controle , Imunogenicidade da Vacina , Vacinas contra Hepatite Viral/imunologia , Adenovirus dos Símios/genética , Adolescente , Adulto , Animais , Método Duplo-Cego , Feminino , Vetores Genéticos , Hepatite C Crônica/epidemiologia , Hepatite C Crônica/imunologia , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Pan troglodytes , Abuso de Substâncias por Via Intravenosa , Linfócitos T/imunologia , Vacinas Sintéticas/imunologia , Vacinas contra Hepatite Viral/efeitos adversos , Adulto Jovem
15.
Science ; 371(6528): 521-526, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33510029

RESUMO

Mucosal-associated invariant T (MAIT) cells are innate sensors of viruses and can augment early immune responses and contribute to protection. We hypothesized that MAIT cells may have inherent adjuvant activity in vaccine platforms that use replication-incompetent adenovirus vectors. In mice and humans, ChAdOx1 (chimpanzee adenovirus Ox1) immunization robustly activated MAIT cells. Activation required plasmacytoid dendritic cell (pDC)-derived interferon (IFN)-α and monocyte-derived interleukin-18. IFN-α-induced, monocyte-derived tumor necrosis factor was also identified as a key secondary signal. All three cytokines were required in vitro and in vivo. Activation of MAIT cells positively correlated with vaccine-induced T cell responses in human volunteers and MAIT cell-deficient mice displayed impaired CD8+ T cell responses to multiple vaccine-encoded antigens. Thus, MAIT cells contribute to the immunogenicity of adenovirus vectors, with implications for vaccine design.


Assuntos
Adenoviridae/imunologia , Imunogenicidade da Vacina , Células T Invariantes Associadas à Mucosa/imunologia , Vacinas Virais/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Vetores Genéticos/imunologia , Humanos , Interferon-alfa/metabolismo , Interleucina-18/metabolismo , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Fator de Necrose Tumoral alfa/metabolismo
16.
J Vis Exp ; (167)2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33491676

RESUMO

The cell cycle of antigen-specific T cells in vivo has been examined by using a few methods, all of which possess some limitations. Bromodeoxyuridine (BrdU) marks cells that are in or recently completed S-phase, and carboxyfluorescein succinimidyl ester (CFSE) detects daughter cells after division. However, these dyes do not allow identification of the cell cycle phase at the time of analysis. An alternative approach is to exploit Ki67, a marker that is highly expressed by cells in all phases of the cell cycle except the quiescent phase G0. Unfortunately, Ki67 does not allow further differentiation as it does not separate cells in S-phase that are committed to mitosis from those in G1 that can remain in this phase, proceed into cycling, or move into G0. Here, we describe a flow cytometric method for capturing a "snapshot" of T cells in different cell cycle phases in mouse secondary lymphoid organs. The method combines Ki67 and DNA staining with major histocompatibility complex (MHC)-peptide-multimer staining and an innovative gating strategy, allowing us to successfully differentiate between antigen-specific CD8 T cells in G0, in G1 and in S-G2/M phases of the cell cycle in the spleen and draining lymph nodes of mice after vaccination with viral vectors carrying the model antigen gag of human immunodeficiency virus (HIV)-1. Critical steps of the method were the choice of the DNA dye and the gating strategy to increase the assay sensitivity and to include highly activated/proliferating antigen-specific T cells that would have been missed by current criteria of analysis. The DNA dye, Hoechst 33342, enabled us to obtain a high-quality discrimination of the G0/G1 and G2/M DNA peaks, while preserving membrane and intracellular staining. The method has great potential to increase knowledge about T cell response in vivo and to improve immuno-monitoring analysis.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Ciclo Celular , DNA/metabolismo , Epitopos/imunologia , Citometria de Fluxo/métodos , Antígeno Ki-67/metabolismo , Vacinação , Animais , Células da Medula Óssea/citologia , Análise de Dados , Feminino , Humanos , Linfonodos/citologia , Camundongos Endogâmicos BALB C , Baço/citologia , Coloração e Rotulagem
17.
Front Immunol ; 11: 579872, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329551

RESUMO

Replication-deficient chimpanzee adenovirus (ChAd) vectors represent an attractive vaccine platform and are thus employed as vaccine candidates against several infectious diseases. Since inducing effective immunity depends on the interplay between innate and adaptive immunity, a deeper understanding of innate immune responses elicited by intramuscularly injected ChAd vectors in tissues can advance the platform's development. Using different candidate vaccines based on the Group C ChAd type 155 (ChAd155) vector, we characterized early immune responses in injected muscles and draining lymph nodes (dLNs) from mice, and complemented these analyses by evaluating cytokine responses and gene expression patterns in peripheral blood from ChAd155-injected macaques. In mice, vector DNA levels gradually decreased post-immunization, but local transgene mRNA expression exhibited two transient peaks [at 6 h and Day (D)5], which were most obvious in dLNs. This dynamic pattern was mirrored by the innate responses in tissues, which developed as early as 1-3 h (cytokines/chemokines) or D1 (immune cells) post-vaccination. They were characterized by a CCL2- and CXCL9/10-dominated chemokine profile, peaking at 6 h (with CXCL10/CCL2 signals also detectable in serum) and D7, and clear immune-cell infiltration peaks at D1/D2 and D6/D7. Experiments with a green fluorescent protein-expressing ChAd155 vector revealed infiltrating hematopoietic cell subsets at the injection site. Cell infiltrates comprised mostly monocytes in muscles, and NK cells, T cells, dendritic cells, monocytes, and B cells in dLNs. Similar bimodal dynamics were observed in whole-blood gene signatures in macaques: most of the 17 enriched immune/innate signaling pathways were significantly upregulated at D1 and D7 and downregulated at D3, and clustering analysis revealed stronger similarities between D1 and D7 signatures versus the D3 signature. Serum cytokine responses (CXCL10, IL1Ra, and low-level IFN-α) in macaques were predominantly observed at D1. Altogether, the early immune responses exhibited bimodal kinetics with transient peaks at D1/D2 and D6/D7, mostly with an IFN-associated signature, and these features were remarkably consistent across most analyzed parameters in murine tissues and macaque blood. These compelling observations reveal a novel aspect of the dynamics of innate immunity induced by ChAd155-vectored vaccines, and contribute to ongoing research to better understand how adenovectors can promote vaccine-induced immunity.


Assuntos
Adenoviridae/imunologia , Vetores Genéticos/imunologia , Animais , Quimiocinas/genética , Quimiocinas/metabolismo , Citocinas/metabolismo , Feminino , Imunidade Celular , Imunidade Inata , Injeções Intramusculares , Interferons/genética , Interferons/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Pan troglodytes , Vacinação , Vacinas
18.
NPJ Vaccines ; 5: 94, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33083029

RESUMO

Simian adenoviral and modified vaccinia Ankara (MVA) viral vectors used in heterologous prime-boost strategies are potent inducers of T cells against encoded antigens and are in advanced testing as vaccine carriers for a wide range of infectious agents and cancers. It is unclear if these responses can be further enhanced or sustained with reboosting strategies. Furthermore, despite the challenges involved in MVA manufacture dose de-escalation has not been performed in humans. In this study, healthy volunteers received chimpanzee-derived adenovirus-3 and MVA vaccines encoding the non-structural region of hepatitis C virus (ChAd3-NSmut/MVA-NSmut) 8 weeks apart. Volunteers were then reboosted with a second round of ChAd3-NSmut/MVA-NSmut or MVA-NSmut vaccines 8 weeks or 1-year later. We also determined the capacity of reduced doses of MVA-NSmut to boost ChAd3-NSmut primed T cells. Reboosting was safe, with no enhanced reactogenicity. Reboosting after an 8-week interval led to minimal re-expansion of transgene-specific T cells. However, after a longer interval, T cell responses expanded efficiently and memory responses were enhanced. The 8-week interval regimen induced a higher percentage of terminally differentiated and effector memory T cells. Reboosting with MVA-NSmut alone was as effective as with ChAd3-NSmut/MVA-NSmut. A ten-fold lower dose of MVA (2 × 107pfu) induced high-magnitude, sustained, broad, and functional Hepatitis C virus (HCV)-specific T cell responses, equivalent to standard doses (2 × 108 pfu). Overall, we show that following Ad/MVA prime-boost vaccination reboosting is most effective after a prolonged interval and is productive with MVA alone. Importantly, we also show that a ten-fold lower dose of MVA is as potent in humans as the standard dose.

19.
PLoS Negl Trop Dis ; 14(7): e0008459, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32667913

RESUMO

Rabies, caused by RNA viruses in the Genus Lyssavirus, is the most fatal of all infectious diseases. This neglected zoonosis remains a major public health problem in developing countries, causing the death of an estimated 25,000-159,000 people each year, with more than half of them in children. The high incidence of human rabies in spite of effective vaccines is mainly linked to the lack of compliance with the complicated administration schedule, inadequacies of the community public health system for local administration by the parenteral route and the overall costs of the vaccine. The goal of our work was the development of a simple, affordable and effective vaccine strategy to prevent human rabies virus infection. This next generation vaccine is based on a replication-defective chimpanzee adenovirus vector belonging to group C, ChAd155-RG, which encodes the rabies glycoprotein (G). We demonstrate here that a single dose of this vaccine induces protective efficacy in a murine model of rabies challenge and elicits strong and durable neutralizing antibody responses in vaccinated non-human primates. Importantly, we demonstrate that one dose of a commercial rabies vaccine effectively boosts the neutralizing antibody responses induced by ChAd155-RG in vaccinated monkeys, showing the compatibility of the novel vectored vaccine with the current post-exposure prophylaxis in the event of rabies virus exposure. Finally, we demonstrate that antibodies induced by ChAd155-RG can also neutralize European bat lyssaviruses 1 and 2 (EBLV-1 and EBLV-2) found in bat reservoirs.


Assuntos
Adenovirus dos Símios/genética , Vacina Antirrábica/imunologia , Raiva/prevenção & controle , Animais , Antígenos Virais , Feminino , Vetores Genéticos/genética , Humanos , Macaca fascicularis , Camundongos , Pan troglodytes/virologia , Profilaxia Pós-Exposição , Coelhos , Vírus da Raiva/genética , Vírus da Raiva/imunologia , Sorogrupo , Vacinação , Vacinas Sintéticas/imunologia , Zoonoses
20.
Sci Transl Med ; 12(548)2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32554708

RESUMO

Strategies to enhance the induction of high magnitude T cell responses through vaccination are urgently needed. Major histocompatibility complex (MHC) class II-associated invariant chain (Ii) plays a critical role in antigen presentation, forming MHC class II peptide complexes for the generation of CD4+ T cell responses. Preclinical studies evaluating the fusion of Ii to antigens encoded in vector delivery systems have shown that this strategy may enhance T cell immune responses to the encoded antigen. We now assess this strategy in humans, using chimpanzee adenovirus 3 and modified vaccinia Ankara vectors encoding human Ii fused to the nonstructural (NS) antigens of hepatitis C virus (HCV) in a heterologous prime/boost regimen. Vaccination was well tolerated and enhanced the peak magnitude, breadth, and proliferative capacity of anti-HCV T cell responses compared to non-Ii vaccines in humans. Very high frequencies of HCV-specific T cells were elicited in humans. Polyfunctional HCV-specific CD8+ and CD4+ responses were induced with up to 30% of CD3+CD8+ cells targeting single HCV epitopes; these were mostly effector memory cells with a high proportion expressing T cell activation and cytolytic markers. No volunteers developed anti-Ii T cell or antibody responses. Using a mouse model and in vitro experiments, we show that Ii fused to NS increases HCV immune responses through enhanced ubiquitination and proteasomal degradation. This strategy could be used to develop more potent HCV vaccines that may contribute to the HCV elimination targets and paves the way for developing class II Ii vaccines against cancer and other infections.


Assuntos
Vacinas Virais , Antígenos de Diferenciação de Linfócitos B/genética , Linfócitos T CD8-Positivos , Hepacivirus/genética , Antígenos de Histocompatibilidade Classe II , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...